Search results for "d'Alembert's formula"

showing 3 items of 3 documents

Solution of a cauchy problem for an infinite chain of linear differential equations

2005

Defining the recurrence relations for orthogonal polynomials we have found an exact solution of a Cauchy problem for an infinite chain of linear differential equations with constant coefficients. These solutions have been found both for homogeneous and an inhomogeneous systems.

Cauchy problemMethod of undetermined coefficientsLinear differential equationElliptic partial differential equationHomogeneous differential equationMathematical analysisStatistical and Nonlinear PhysicsCauchy boundary conditiond'Alembert's formulaHyperbolic partial differential equationMathematical PhysicsMathematicsReports on Mathematical Physics
researchProduct

On global solutions of the Maxwell-Dirac equations

1987

We prove, for the Maxwell-Dirac equations in 1+3 dimensions, that modified wave operators exist on a domain of small entire test functions of exponential type and that the Cauchy problem, inR+×R3, has a unique solution for each initial condition (att=0) which is in the image of the wave operator. The modification of the wave operator, which eliminates infrared divergences, is given by approximate solutions of the Hamilton-Jacobi equation, for a relativistic electron in an electromagnetic potential. The modified wave operator linearizes the Maxwell-Dirac equations to their linear part.

Momentum operatorElectromagnetic wave equationMathematical analysisStatistical and Nonlinear PhysicsInhomogeneous electromagnetic wave equationd'Alembert's formula35Q20Operator (computer programming)35L45Initial value problemD'Alembert operatorHyperbolic partial differential equation35P25Mathematical Physics81D25MathematicsCommunications in Mathematical Physics
researchProduct

Itô-Stratonovitch Formula for the Wave Equation on a Torus

2010

We give an Ito-Stratonovitch formula for the wave equation on a torus, where we have no stochastic process associated to this partial differential equation. This gives a generalization of the classical Ito-Stratonovitch equation for diffusion in semi-group theory established by ourself in [18], [20].

symbols.namesakePartial differential equationDiffusion equationMathematics::ProbabilityDifferential equationMathematical analysisFirst-order partial differential equationsymbolsFokker–Planck equationFisher's equationWave equationd'Alembert's formulaMathematics
researchProduct