Search results for "d'Alembert's formula"
showing 3 items of 3 documents
Solution of a cauchy problem for an infinite chain of linear differential equations
2005
Defining the recurrence relations for orthogonal polynomials we have found an exact solution of a Cauchy problem for an infinite chain of linear differential equations with constant coefficients. These solutions have been found both for homogeneous and an inhomogeneous systems.
On global solutions of the Maxwell-Dirac equations
1987
We prove, for the Maxwell-Dirac equations in 1+3 dimensions, that modified wave operators exist on a domain of small entire test functions of exponential type and that the Cauchy problem, inR+×R3, has a unique solution for each initial condition (att=0) which is in the image of the wave operator. The modification of the wave operator, which eliminates infrared divergences, is given by approximate solutions of the Hamilton-Jacobi equation, for a relativistic electron in an electromagnetic potential. The modified wave operator linearizes the Maxwell-Dirac equations to their linear part.
Itô-Stratonovitch Formula for the Wave Equation on a Torus
2010
We give an Ito-Stratonovitch formula for the wave equation on a torus, where we have no stochastic process associated to this partial differential equation. This gives a generalization of the classical Ito-Stratonovitch equation for diffusion in semi-group theory established by ourself in [18], [20].